Polymeric [**(Me,Sn),Rh(SCN),]** : **A Novel "Super-Prussian-Blue" Derivative Containing the Nonlinear -SCN-Sn- NCS- Spacer**

Eric Siebel and R. Dieter Fischer*

Dedicated *to* Professor *Gottfried* Huttner ow *the occasion of his 60th* birthday

Abstract: The new coordination polymer $[(Me₃Sn^{IV})₃Rh^{III}(SCN)₆]=\frac{3}{\infty}[Rh{\mu$ - $(SCNSnMe₃NCS)₃$] (5) is readily accessible by straightforward self-assembly of $[Rh(SCN)₆]$ ³⁻ and (dehydrated) ${Me₃Sn₂⁺ \overline{S}_{aq}}$ ions. The architecture of 5 is strongly reminiscent of "super-Prussianblue" systems reported earlier: there is a thrcc-dimensional (3-D) framework involving {Rh,) pseudocubes as the basic building blocks, the Rh^{3+} ions being held apart by novel, nonlinear ${SCN-SnMe₃ -$ NCS} spacers $(d(Rh \cdots Rh) = 1.27 nm)$.

Keywords

coordination polymers * Prussian blue \cdot rhodium \cdot structure elucidation \cdot tin

The complcte lattice consists of *two* equivalent and independent. ideally interwoven 3-D frameworks. Three homologues of 5 with slightly modified R₃Sn units $(R = Et, nPr$ and nBu) have been prepared as well, but display X-ray powder diffraction patterns notably different from that of **5.**

Introduction

The history of Prussian blue (PB) and closcly related polymeric metal cyanides is rich in remarkable landmarks.^[1] Interestingly, at least four years before the first presentation of the architecture of "real" PB,^[2] Pauling and Pauling had already deduced the structure of the first "super-PB" systems from reported Xray powder diffractogram (XRP) data.^[3] According to their analysis, crystalline $Ag_3[Co(CN)_6]$ (1) should consist of three equivalent and independent, ideally interwoven "super-PB" frameworks (Figure 1) with $\{CN-Ag-NC\}$ instead of $\{CN\}$ spacers between two transition-metal ions. This hitherto unquestioned view^[4] is further supported by more recent studies of single crystals of the related compounds $\{K^+ \subset Au_{\alpha}^I[Co^{II}]$ $(NC)_{6}$ ⁻ $\}$ (2)^[5] and {Rb⁺ \subset Ag₃[Cd^{II}(NC)₆]⁻ $\}$ (3)^[6] In spite of the interpenetration of three ${M_s}$ pseudocubes in 1-3 $(M = Co \text{ or } Cd)$, sufficient space remains for the alkali guest cations to reside in straight channels along one body diagonal of the pseudocubes.^[6] We first showed in $1985^{[7]}$ that by the formal replacement of each Ag' ion of **1** (Figure 1) by a planar $Me₃Sn⁺$ fragment as spacer, lattice interpenetration is circumvented. The resulting organotin(1v) polymer $[(Me₃Sn)₃Co(CN)₆] = _{$\infty$} [Co{ μ -(CNSnMe₃NC)₃](4) adopts$ an unprecedented type of spacious, three-dimensional (3-D) framework devoid of any pseudocubes as basic structural building blocks.^[7, 8] After the recent demonstration^[9] that the related

Figure I. Simplified view of the interpenetrating, triple framework structure of the "super-Prussian-blue" systems 1, 2, and 3 (the alkali guest cation of 2 and 3 is omitted). M' = Ag. **Au:** M" = *Co.* Cd.

negatively charged ${}_{\infty}^{3}$ [Fe^H{ μ -(CNSnMe₃NC)}₃] lattice displays intraframework channels wide enough to host, inter aha, metallocene cations, we wish to report here the synthesis and the crystal structure of the novel coordination polymer $[(Me₃Sn)₃Rh(SCN)₆] = \frac{3}{6} [Rh₁² \mu-(SCNSnMe₃NCS)₃]$ (5), wherein the spacer is elongated by two sulfur atoms.

Results and Discussion

Our intention to replace the "super-PB" spacers ${NC-M'-}$ CN} or $\{CN-M'-NC\}$ ($M' = Ag$, Au) adopted so far with an obviously longer {SCN-Sn-NCS} tether would require the

choice of a transition-metal ion able to coordinate the relatively soft $\mathfrak{t}^{[10]}$ sulfur site of the thiocyanate ion. Trivalent rhodium was chosen in view of promising reports by Preetz et al.,^[11] who succeeded in separating the salts of various linkage isomers of the complex type $[Rh(NCS)_{n}(SCN)_{6-n}]^{3}$ ⁻ $(n = 0-4)$ from each other. To verify the situation for $n = 0$, we speculated on an ancillary activity of the triorganotin ion, which was expected to make only the sulfur atoms available for the rhodium ions, owing to its well-known preference for the nitrogen site of the NCS⁻ anion.^[12]

Actually, analytically pure, air-stable products of the anticipated composition $[(R_3Sn)_3Rh(SCN)_6]$ with $R = Me$, Et, nPr and nBu *(5-8)* wefe readily accessible as red or orange precipitates according to Equation (1), where $R = Me(5)$, Et (6) , *n*Pr

$$
3 R_3 SnCl + K_3[Rh(NCS)_n(SCN)_{(6-n)}] \xrightarrow{-H_2O} [(R_3 Sn)_3Rh(SCN)_6]
$$
 (1)
(0 < n < 4)

(7) or nBu **(8).** Sparing solubility in common solvents and high thermal stability, without evidence of melting up to at least *250"C,* are indicative of the formation of coordination polymers. Only one v(CN) band for each is detectable in the infrared (IR) spectra (Table 1), with frequencies significantly higher than for $K_3[Rh(SCN)_6]$ (2098 cm^{-1[11]}) and polymeric [Me₃SnNCS] $(2050-2090 \text{ cm}^{-1113})$. Mixtures of different linkage isomers would be expected to display more than one $v(CN)$ band.^[11] Centrosymmetric (RhS,} fragments may be deduced for **5** from

Table 1. Selected spectroscopic (IR, ¹³C NMR) data, experimental densities (ρ_{exp}) and formula volumes (V_I) of **5-8**.

Quantity			5 (R = Me) 6 (R = Et) 7 (R = nPr) 8 (R = nBu)	
$v(CN)$ (cm ⁻¹)	2120 ss [a]	2118 ss	2116 ss	2117 ss
$v(SnC)$ (cm ⁻¹)	566 m	525 m	512 m	510 m
$\rho_{exp}\left(\textrm{g}\textrm{cm}^{-1}\right)$	1.98	1.64	1.52	1.36
V_f (cm ³) [b]	499	652	786	971
δ (¹³ C _a)	2.02 [c]	11.3 _{br}	19.1	19.7
δ (¹³ C _a)		10.6	20.1	29.1
δ (¹³ C ₂)			22.8	$27.7 \,[d,e]$
${}^{1}J({}^{119}\text{Sn}, {}^{13}\text{C}_x)$ (Hz)	512	493	m	513

[a] Raman band of 5: 2127 cm⁻¹. [b] $V_f = \rho_{exp}/M_r$. [c] $\delta(^{13}C)$ of NCS group of **5** = 122.3. [d] $\delta(^{13}C)$ of **8** = 14.2. [e] The assignment of $\delta(^{13}C)$ follows ref. [24]. [f] Suitable satellites of ¹³C_a resonance to determine ¹ $J(^{119}Sn, ^{13}C)$ not detectable.

Abstract in German: *Die Selbstorganisation von* [*Rh-* $(SCN)_{6}$ ³⁻- *und dehydratisierten* $\{Me_{3}Sn\}^{+}_{aq}$ -Ionen führt zu *dem neuartigen Koordinationspolyrner* [*(Me,Sn") ,Rh"'-* $(SCN)_6$ = $\frac{3}{\alpha}$ *Rh*{ μ - $(SCNSnMe$ ₃ NCS }₃ $J(5)$, *dessen Archifektur deutlich an die bereits hekannter* . , *Super-Berlinerb1au"- Systeme erinnert.* { $Rh₈$ }-Quasiwürfel bilden die Grundbausteine *piektur deutlich an die bereits bekannter _a Super-Berlinerblau''-*
Systeme erinnert. {Rh_s}-Quasiwürfel bilden die Grundbausteine
eines dreidimensionalen (3-D) Netzwerks, dessen Rh³⁺-Ionen *durch reiativ lange, nichtlineare {SCN-SnMe,- NCS) --Spacer miteinander verknüpft sind (d(* $Rh \cdots Rh$ *) = 1.27 nm). Das vollstandige Gitter umfaJt zwei aquivalente und voneinander unabhungige 3-D-Netzwerke, deren (Rh,)-Quasiwurfel optimal ineinander geschuchtelt sind. Drei Homologe von* **5** *mit leicht modifizierten R,Sn-Einheiten (R* = *Et, nPr, und nBu) werden* ebenfalls hergestellt und näher beschrieben: Ihre Röntgenpulver*diagrurnme weichen signifikunt von dem* von *5 ah.*

the appearance of two pairs of nonsuperimposable $v(RhS)$ bands in the IR and Raman (Ra) spectra (IR: 276 m, 282 m, Ra: 238, 258 cm^{-1}).

The structure analysis of a single crystal of **5** confirms the presence of quasioctahedral ${RhS_6}$ units of local D_{24} symmetry and, moreover, a closer resemblance to the above-mentioned "super-PB" systems $1-3$ than to 4. Thus, $\{Rh_s\}$ pseudocubes result from the periodic cross-linking of almost linear $Rh \cdots Sn \cdots Rh \cdots Sn$ chains with a $Rh \cdots Rh$ separation of 1.27 nm and Rh-Rh'-Rh" angles of 87.22(1) and $92.78(2)$ °. When the thiocyanato bridges are accounted for as well, obviously nonlinear chains of the general pattern -[Rh-S 1 *-C* ¹- $N1-Sn-N2-C2-S2$]-_{∞} become apparent (Figures 2 and 3).

Figure 2. ORTEP plot of one representative zigzag chain of 5 and parts of its immediate surroundings.

Figure 3. Simplified view of the interpenetrating double framework structure of 5: NCS bridges are shown only between four Sn-Rh pairs, and all CH₃ groups are omitted for clarity (the direct lines between the Rh and Sn atoms do not correspond to chemical bonds).

The considerable elongation of the $Rh \cdots Rh$ distance relative to the shortest $Co \cdots Co$ distance in $4^{[7,8]}$ (ca. 0.94 nm) would favour framework interpenetration, while the pronounced kinks at the sulfur atoms (for the values of the Rh-S-C angles see Table *3)* and the space-demanding tin-bonded methyl groups are more likely to counteract that tendency. It should be noted that the slightly smaller Hg-S-C angles of polymeric *[Co-*Hg(SCN)₄] (97.3(5)^o)^[14] *do* prevent framework interpenetration in this potentially diamondoid 3-D system.

Actually, *5,* unlike **1-4,** displays a "super-PB"-like lattice built up of *two* equivalent, ideally interwoven frameworks (Figure 3). **A** perspective *of* the complete structure viewed along its crystallographic c axis (that is, along one body diagonal of the pseudocubes, Figure 4) suggests comparatively compact ¹⁹⁸⁸- ci) WILEY-VCH Verldg GmhH, D-69451 Weinheim, 1997 0947-6539/97/0312-1988 \$17 SO+ *5OjO Chew Eur J* **1997,3,** No **¹²**

packing, as the channels corresponding to those hosting the alkali guest cations of **2** and **3[151** have to accommodate the tin-bonded methyl groups. As would be expected for the mutual interpenetration of two spacious frameworks, the crystallographic formula volume V_f of 5 (ca. 500 cm³ mol⁻¹) exceeds trireticulate "super-PB" systems $1-3$ $(184-218 \text{ cm}^3 \text{ mol}^{-1})$ by at least 130% (for **3).** that of 4 (460 cm³ mol⁻¹) by only 8.7%, but the V_f values of the

As the experimental X-ray powder diffractogram (XRP) of **5** agrees well with the calculated one (Figure 5), the crystallo-

graphically determined asymmetric unit should likewise be reflected by the CPMAS (CP = cross-polarisation; $MAS =$ magic-angle spinning) solid-state 13 C NMR spectrum of finely ground polycrystalline **5.** However, although three nonequivalent CH₃- and two different NCS units are present, only one methyl and one thiocyanate carbon resonance appear down to -30 °C. Rapid (on the NMR timescale) rotation of the Me₃Sn units about their N-Sn-N axes must account for this discrepancy. Similar deviations of solid-state NMR features from results of X-ray diffraction studies have been observed earlier in closely related cases, because these two techniques refer to very different timescales.^[8, 9a, 16]

Interestingly, the XRP's of **6-8** [see Equation (I) and Figure 61 look quite different from that of **5.** Since the density-based

formula volumes V_f of **5-8** increase gradually with the space demand of the tin-bonded group R (Table I), changes of the framework architecture are likely to result as the volume of R increases. Actually, some of the intraframework voids of **5,** depicted in Figure 7, might be too narrow to accommodate R_3Sn units with R larger than Me, since the van der Waals spheres of the closest-lying methyl C and thiocyanato S atoms are not far from overlapping. For instance, we have found the following relatively short (but still nonbonding) distances (in pm): $S1 \cdots C4$, 389.8; $S1 \cdots H(4C)$, 318.6; $S2 \cdots H(4B)$, 318.7. On the other hand, V_f does not increase abruptly, nor does it reach values about twice as large as V_f of 5, so that a transition to a framework devoid of interpenetration seems unlikely. We have, moreover, observed a corresponding increase of V_f when R was varied within different series of coordination polymers of the type $[(R_3Sn)_3M(CN)_6]$ with $M = Co$, Rh, Ir, where lattice inter-13C NMR spectra of **6-8** suggest that, owing to the anticipated moderate lattice expansion, rapid R_3 Sn rotation again takes place, since just one signal is found for each of the non penetration may be strictly ruled out (Table 2). The CPMAS $\frac{1}{20}$ equivalent carbon atoms in the α -, β -, γ - and δ -positions of R
30 **40** 50 60 (Table 1).

20 ["]- Recently, the first complete description of a successful single-Figure 5. Experimental (a) and calculated (b) X-ray powder diffractograms of 5. crystal X-ray study of a genuine salt of the $[Rh(SCN)_6]^{3-}$ ion,

Figure 7. Perspective of the structure of 5 along the *a* axis,
depicting the space actually available for the organic groups
R of the organotin(IV) fragment. The CH₃ groups are omitted depicting the space actually available for the organic groups R of the organotin(iv) fragment. The CH₃ groups are omitted $c \leftarrow$ **c**

Table 2. Formula volumes V_f of various $[(R_3Sn)_3M(CN)_6]$ systems, calculated from pyknometric density values.

M	$R = Me$	$R = Et$	$R = nPr$	$R = nBu$
Cσ	460	603	705	798
Rh	436	573	711	836
Ir	431	543	680	654

 $[P(C_6H_5)_4]_3[Rh(SCN)_6]$ (9), has appeared.^[17] A selection of corresponding bond lengths and bond angles for **5** and **9** is listed for comparison in Table 3. Apart from the higher local symmetry of the {Rh(SCN),} unit in **5,** most of the parameters considered adopt very similar values. On the other hand, the framework structure of **5** involves strict coplanarity of each of the three *trans*-oriented pairs of SCN ligands, while the $[PC_6H_5)_4]$ ⁺ countercations of **9** apparently force all trans-NCS-Rh-SCN fragments to adopt dihedral angles markedly different from 0". The structural parameters of the (Me,SnN,) units of **5** compare wcll with those of **4,** for example (Table 3).

Interestingly, experimental access to genuine salts $A_3[Rh(SCN)_6]$ (with all-S-bonded thiocyanate) is less straightforward than that to the new coordination polymers $[(R_3Sn)_3Rh(SCN)_6]$. While for the preparation of the former considerable effort to separate the various linkage isomers $[Rh(NCS)_n(SCN)_{6-n}]$ ³⁻ (e.g. by ion-exchange chromatogra $phy^[11]$) is inevitable, and severely reduces the yield of the desired isomer with $n = 0$, all coordination polymers can be obtained in yields of up to 90% without applying any separation technique. The most reasonable explanation of this result is that the initially hydrated Lewis acid R_3Sn^+ strongly facilitates the

Table 3. Comparison of selected structural data (bond lengths in pm: bond angles in ") for **5** and **9.**

	5.	$9^{[17]}$ or $4^{[8]}$		5	$9^{[17]}$ or $4^{[8]}$
$Rh-S1$	241.9(6)	$239.6(6)$ to	Rh-S1-C1	109.9(6)	$110.5(7)$ to
Rh $S2$	235.1(5)	$234.8(5)$ [a]	$Rh-S2-C2$	106.8(5)	$107.9(5)$ [a]
$S1 - C1$	161.4(14)	$159(5)$ to	$S1-C1-N1$	174(2)	$172(2)$ to
S ₂ C ₂	164(2)	$166(2)$ [a]	$S2-C2-N2$	178(2)	177.4(14) [b]
$C1-N1$	114(2)	$111(2)$ to			
$C2-N2$	115(2)	$116(2)$ [b]	$C1-N1-Sn$	179(2)	$134(3)$ to
			$C2-N2-Sn$	172(2)	172(4) [a]
$Sn - N1$	235(2)	$220(2)$ to	$N1-Sn-N2$	175.5(6)	$170(1)$ to $175(1)$ [c]
Sn $N2$	237.4(13)	$253(3)$ [a]	$C3-Sn-C4$	125.0(10)	
$Sn-C3$	209(2)		C3-Sn-C5	118.3(9)	
$Sn-C4$	211.5(14)		$C4-Sn-C5$	116.6(10)	
Sn $C5$	205(3)		$N1-Sn-C3$	92.7(8)	
			$N1-Sn-C4$	88.9(6)	
			$N1-Sn-C5$	90.4(8)	

[a] Six different values. [b] Five different values. [c] Three different values.

conversion of all linkage isomers still involving Rh-N bonds into the all-(Rh-S)-containing $[(SCN)_6]^{3-}$ isomer, because all nitrogen ends of the NCS⁻ ions are efficiently captured by the likewise acidic but "harder" (than $Rh^{3+}[10]$ tin sites.^[24]

Conclusion and Outlook

The present contribution describes the first successful attempt to expand the spacer of a "super-PB" system from the now familiar pentaatomic $\{CN-M-NC\}$ unit to the notably longer, albeit nonlinear, heptaatomic ${SCN-M-NCS}$ tether.^[18] We consider the remarkably facile synthesis of the compounds **5-8,** based upon the excellent nitrogen-acceptor role of the ${R_3Sn^+}$ cation, as encouraging for diverse related future explorations. For instance, with appropriately chosen guest cations A^+ , novel host – guest systems of the type $[(A^+)(R_3Sn)_3M^H(SCN)₆$] might be designed wherein a sufficiently large guest cation (or "structure director") $A⁺$ would prevent interpenetration in the framework. One first example of a "super-PB" system hosting both a voluminous metal complex together with some benzene molecules has briefly been mentioned.^[19]

In view of the specific structural motif of **5,** we wish to point out that the number of interwoven frames based on octahedral centres ("a-polonium-type" structures) so far known is still very limited: of a total of seven examples reported so far,^[3, 5, 6, 20-22] only three^{$[20 - 22]$} involve *bireticulate lattices*.

Experimental Section

General methods: Manipulation in an inert gas atmosphere was not necessary. lnfrarcd spectra were obtained on a Perkin Elmer IR-1720 spectrometer, and Raman spectra on a Jobin Yvon U-1000 instrument equipped with a 514 nm Ar lascr. CPMAS **I3C** solid-state NMR spectra were recorded on a Bruker MSL-300 spectrometer operating at 75.47 MHz, and X-ray powder diffractograms on a Philips X'PERT instrument ($Cu_{K_{\tau}}$ irradiation, Ni filter). The crystallographic single-crystal X-ray study was carried out on a Syntex P2, four-circle diffractometer. Pyknometric density measurements were conducted at *25'C* with 25 mL pyknometers (DIN 12797). freshly distilled dioxane and at least 0.7 g of the suspended samples per measurement.

Preparation of tris(trimethyltin)hexakis(thiocyanato)rhodate(III) (5) : In a combination of procedures described in refs. [11] and [23], a mixture of RhCl₃ \cdot H₂O (3.0 g, 11.4 mmol), KSCN (6.0 g, 61.7 mmol) and H₂O (80 mL) was converted slowly, under continuous stirring at temperatures around 100° C, into a viscous crystalline paste. H₂O (ca. 50 mL) was added and then cvaporatcd twice. The residue obtained after extraction with absolute EtOH, filtration and solvent evaporation was dissolved in an aqueous aolution of KSCN (1.5 M , 210 mL) while being stirred for 6 h at 60 $^{\circ}$ C. This solution contained about 24.5 mg $[(Rh(SCN)₆]$ ³⁻ per mL and was stored in a rcfrigcrator. To prepare *5,* a concentrated aqueous solution of of Me,SnCl $(478 \text{ mg}, 2.4 \text{ mmol})$ was added to 15 mL of the above stock solution containing about 367 mg (0.8 mmol) of $[Rh(CN)_6]^3$. Each of the homologues $6-8$ of **5** was prepared correspondingly. The coordination polymer usually precipitated in high yiclds as a red, polycrystalline material. Filtration, washing with a little H,O and drying in vacun led to analytically pure products. Yields of *5-* **8** (relative to [Rh(SCN),I3-): 85, 94, 87, 97%. Compound *5,* C_1 , H_2 , N_6 S_6 Sn_3 Rh (942.77): calcd C 19.11, H 2.88, N 8.91, Sn 37.77; found *C* 19.10, H 2.64, N 8.90, Sn 37.46%. Compound **6**, $C_{24}H_{45}N_6S_6Sn_3Rh$ (1068.8s): calcd *C* 26.96, H 24.24. N 7.86, Sn 33.31; found *C* 27.19, H 4.26 N 7.42, Sn 35.50%. Compound **7,** C,,H,,N,S,Sn,Rh (1195.01): calcd *C* 33.16, H 5.31 N 7.03, Sn 29.80; found *C* 33.58, H 5.47, N 6.49, Sn 32.58%. Compound **8.** $C_{42}H_{81}N_6S_6Sn_3Rh$ (1321.16): calcd C 38.18, H 6.17, N 6.36, **Sn** 26.95: found *C* 39.24. H 6.06, N 5.50. Sn 26.45%.

X-ray crystallography: Small. red single crystals of **5** crystallized from the filtrate obtained after the work-up of thc main amount of *5* (see above) when it was kept for one month at about 5-C. Crystal data for *5:* $C_{15}H_{27}N_{6}S_{6}Sn_{3}Rh$, $M_{r} = 942.77$ gmol⁻¹, rhombohedral, R3c (No. 161); $a = b = 13.441(2) \times 10^2$, $c = 30.557(6) \cdot 10^2$ pm, $\gamma = 120^{\circ}$, $V = 4780.8(14) \times$ 10⁶ pm³, $Z = 6$, $\rho_{\text{calc}} = 1.965 \text{ g cm}^{-3}$ (ρ_{exp} : see Table 1), $F(000) = 2700$; $T = 293$ K, 20 range: 3.03 to 27.58°. For $R(int) = 0.0626$, 2448 symmetry-independent reflections (total: 2542) were collected; data/restraints/parametcrs: 2448/1/98, structure solution SHELXS, (SHELXTL PLUS (VMS), V4.2), refinement against $|F^2|$ with $R1 = 0.0649$ and $wR2 = 0.1428$ ($I > 2\sigma$) (SHELXL-93); absorption correction by DIFABS (PLATON 94); $\mu =$ 3.24 mm⁻¹, min./max. transmission = $0.63/1.293$. Powder diagram simulated with CERIUS 3.2 (MSI); 2θ range $5 \cdot 50^\circ$. Further details of the crystal structure investigation can be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on quoting the depository number CSD-406417.

Acknowledgements: This work was supported by thc Dcutsche Forschungsgemcinschart (Joint Project: "Nanoporous Crystals") and the Fonds dcr Chemischen Industrie. A generous gift of RhCl₃ from Degussa AG is greatly appreciated. Thanks arc also due to Professor **U.** Behrcns for his helpful advice on crystallography, to K. Rechter for numerous essential pyknometric density measurements and to J. Ludwig and Dr. K.-H. Klaska (Mincralogisch-Petrographisches Institut, Universitit Hamburg) for recording the Xray powdcr diffractograms.

Received: May 22, I997 [F702]

- [I] a) **A** Ludi, *Chm?. Unserer Zei/* **1988.** *22.* 123 127: b) K. R. Dunbar. R **A.** Heintz, in *Prog. Inorg. Chem., Vol. 45* (Ed.: K. D. Karlin), Wiley, New York. **1997,** pp. 283-391.
- [2] That is, of Fe₄[Fe(CN)₆]₃·14H₂O: a) H. J. Buser, A. Ludi, W. Petter, D. Schwarzenhach, *J C'hciii. Sor. Chwi. Conininn.* **1972.** 1299: b) H. **J.** Buccr. D. Schwarzenhach, W. Pcttcr, **A.** Ludi. *I~JF,~ C'hun.* **1977,** *16,* 2704 2710,
- *[3]* **1,.** Pauling. P Pauling, *Proc. .Nu/. Aud. Sli. USA* **1968.** *60, 362-* 367
- [4] A. Ludi. H. U. Giidel, *Helv. Chin?. Acro* **1968.** *51,* 1762 1765.
- [5] S. C. Abrahams, J. L. Bernstein, R. Liminga, E. T. Eisenmann, *J. Chem. Phys.* **1980.** *73,* 4585-4590.
- *[6] B. F. Hoskins, R. Robson, N. V. Y. Scarlett, J. Chem. Soc. Chem. Commun.* **1994.** 2025 2026.
- [7] K. Yiinlu. N. Hock. R. D. Fischer. *Angm~ Chein.* **1985,** 97. 863 -864, *Awpw. Cl1r.m. Inr. Ed. Engl.* **1985,** *24, 879-XHI.*
- U. Behrens, A. K. Brimah, T. M. Soliman, R. D. Fischer, D. C. Apperley, N. A. Davies, R. K. Harris, Organometallics 1992, 11, 1718 1726.
- [9] a) P. Schwarz, E. Siebel. R. D. Fischcr. D. C. Apperley, N. A. Davies. R. K. €Iarris, *Angcw C'hem.* **1995,** *107,* 131 1 - 1313; *AII,?~~. Chrm. Inr. Ed. Engl.* **1995,** *34.* 1197 ~ 1199; b) P. Brandt, A. K Brimah. R. **L).** Fischer. *;bid* **1988.** *IOO,* 1578-1580 and **1988,** 27, 1521 -1522.
- [lo] See: R. *G.* Pearsoti, *J. Am. Chmii. Soc.* **1963,** *XS.* 3533-3519.
- [11] H. H. Fricke, W. Preetz, *Z. Anorg. Allg. Chem.* **1983**, 507, 12 *22*.
- 1121 R. A. Fordtr, G. M. Sheldrick. *.I Orgunomel. C'hen7.* **1970.** *21,* **115** 122.
- [13] V. Peruzzi. G. Tagliavini, R. E. Hester, *J Orxunoniei. Chmi.* **1973.** *56.* 1x5 192.
- 1141 a) J. C. Jeffrey, K. M. Rose, *Acta Cryful/ogr. R* **1968,** *24, 653--hh2;* b) in polymeric [Me,SnNCS] the Sn-S-C angle amounts likewise to 97' (ref. **[12]).** *c)* gcnerally. even simple AB, systems have a pronounced tcndcncy to undergo latticc interpenetration.
- [15] See, for comparison, Figure 2 of ref. [6].
- [16] P. Schwarz, S. Eller, E. Sicbcl, T. M. Soliman, R. D. Fischer, D. C. Appcrlcy. N. A. Davies, R. K. Harris, *Angew. Chem.* 1996, 108, 1611-1614; *Angew. Chcrn. In/. Ed. Enx/.* **1996, 35,** 1525- 1527.
- [17] J.-U Vogt. 0. IIaeckel, W. Prcetz. *Z. Anorg.* AUg. *Chcw* **1995.** *621.* **¹⁰³³** 1036.
- [18] Some coordination polymers (of different architecture) involving even octaatomic $\{CN \; Ag \; CN-Ag-CN\}^-$ bridges have recently been reported (ref. [22]).
- 119] See: T. Iwamoto in *Comprehensive Supramolecular Chemistry, Vol. 6* (Eds.: J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle). Pergamon, Oxford. **1996, p.** 687.
- *[20]* **13.** Schafer, H. G. von Schncring, K. **J.** Niehues. H. G. Nieder-Vuhrenholr. *J Lim-Conmoii Mei.* **1965, 9,** 95 104.
- [21] J. Zhang, J. D. Corbett, *Inorg. Chem.* **1991**, 30 , $431 435$.
- [22] T. Soma, H. Yuge, T. Iwamoto, Angew. Chem. **1994**, 106 , 1746 -1748; Angew. *Chem. Int. Ed. Engl.* **1994**, 33, 1665 1666.
- [23] A. Botar, E. Blasius, G. Klemm. *Z. Anorg. Allg. Chcw7.* **1979, 449.** 174 176.
- [24] T. N. Mitchell, *J Orgunoniet. Cheni.* **1973,** *S9,* I89 ~ 197